MathDB
d(a^n-1) is at least n if a^n+1 is prime

Source: Baltic Way 1996 Q10

March 19, 2011
number theoryrelatively primenumber theory proposed

Problem Statement

Denote by d(n)d(n) the number of distinct positive divisors of a positive integer nn (including 11 and nn). Let a>1a>1 and n>0n>0 be integers such that an+1a^n+1 is a prime. Prove that d(an1)nd(a^n-1)\ge n.