MathDB
Miklós Schweizer 2000, Problem 7

Source: Miklós Schweitzer 2000

July 30, 2016
college contestsMiklos Schweitzerfunctioncomplex analysistopology

Problem Statement

Let H(D)H(D) denote the space of functions holomorphic on the disc D={z ⁣:z<1}D=\{ z\colon |z|<1 \}, endowed with the topology of uniform convergence on each compact subset of DD. If f(z)=n=0anznf(z)=\sum_{n=0}^{\infty} a_nz^n, then we shall denote Sn(f,z)=k=0nakzkS_n(f,z)=\sum_{k=0}^n a_kz^k. A function fH(D)f\in H(D) is called universal if, for every continuous function g ⁣:DCg\colon\partial D\rightarrow \mathbb{C} and for every ε>0\varepsilon >0, there are partial sums Sn(j)(f,z)S_{n(j)}(f,z) approximating gg uniformly on the arc {eit ⁣:0t2πε}\{ e^{it} \colon 0\le t\le 2\pi - \varepsilon\}. Prove that the set of universal functions contains a dense GδG_{\delta} subset of H(D)H(D).