MathDB
China Mathematical Olympiad 1988 problem1

Source: China Mathematical Olympiad 1988 problem1

November 4, 2013
inequalitiesfunctioninequalities unsolved

Problem Statement

Let r1,r2,,rnr_1,r_2,\dots ,r_n be real numbers. Given nn reals a1,a2,,ana_1,a_2,\dots ,a_n that are not all equal to 00, suppose that inequality r1(x1a1)+r2(x2a2)++rn(xnan)x12+x22++xn2a12+a22++an2r_1(x_1-a_1)+ r_2(x_2-a_2)+\dots + r_n(x_n-a_n)\leq\sqrt{x_1^2+ x_2^2+\dots + x_n^2}-\sqrt{a_1^2+a_2^2+\dots +a_n^2} holds for arbitrary reals x1,x2,,xnx_1,x_2,\dots ,x_n. Find the values of r1,r2,,rnr_1,r_2,\dots ,r_n.