MathDB
f(xy^2)+f(x^2y)=y^2f(x)+x^2f(y), f(2008) =f(-2008)

Source: Mathcenter Contest / Oly - Thai Forum 2008 R1 p2 https://artofproblemsolving.com/community/c3196914_mathcenter_contest

November 10, 2022
algebrafunctional equationfunctional

Problem Statement

Find all the functions f:RRf:\mathbb{R}\to\mathbb{R} which satisfy the functional equation f(xy2)+f(x2y)=y2f(x)+x2f(y)f(xy^2)+f(x^2y)=y^2f(x)+x^2f(y) for every x,yRx,y\in\mathbb{R} and f(2008)=f(2008)f(2008) =f(-2008)
(nooonuii)