MathDB
Inequality: a + b + c = 3; sums of square roots

Source: Mediterranean Mathematics Olympiad 2016 P2

June 4, 2016
inequalities

Problem Statement

Let a,b,ca,b,c be positive real numbers with a+b+c=3a+b+c=3. Prove that ba2+3+cb2+3+ac2+3  321abc4 \sqrt{\frac{b}{a^2+3}}+ \sqrt{\frac{c}{b^2+3}}+ \sqrt{\frac{a}{c^2+3}} ~\le~ \frac32\sqrt[4]{\frac{1}{abc}}