MathDB
|f(\alpha)-g(\alpha)|

Source: 3-rd Taiwanese Mathematical Olympiad 1994

January 15, 2007
inequalities unsolvedinequalities

Problem Statement

Let a,b,ca,b,c are positive real numbers and α\alpha be any real number. Denote f(α)=abc(aα+bα+cα),g(α)=a2+α(b+ca)+b2+α(b+c+a)+c2+α(bc+a)f(\alpha)=abc(a^{\alpha}+b^{\alpha}+c^{\alpha}), g(\alpha)=a^{2+\alpha}(b+c-a)+b^{2+\alpha}(-b+c+a)+c^{2+\alpha}(b-c+a). Determine minf(α)g(α)\min{|f(\alpha)-g(\alpha)|} and maxf(α)g(α)\max{|f(\alpha)-g(\alpha)|}, if they are exists.