MathDB
Cyclic inequality where x^2+y^2+z^2=x+y+z

Source: Azerbaijan 2022 Junior National Olympiad

May 14, 2022
InequalityalgebraAzerbaijanJuniorinequalities

Problem Statement

Let x,y,zR+x,y,z \in \mathbb{R}^{+} and x2+y2+z2=x+y+zx^2+y^2+z^2=x+y+z. Prove that x+y+z+36xy+yz+zx33x+y+z+3 \ge 6 \sqrt[3]{\frac{xy+yz+zx}{3}}