MathDB
ITAMO 2018 problem 3

Source:

May 9, 2018
Inequality

Problem Statement

Let x1,x2,...,xnx_1,x_2, ... , x_n be positive integers,Asumme that in their decimal representations no xix_i "prolongs" xjx_j.For instance , 123123 prolongs 1212 , 459459 prolongs 44 , but 124124 does not prolog 123123. Prove that : 1x1+1x2+...+1xn<3\frac {1}{x_1}+\frac {1}{x_2}+...+\frac {1}{x_n} < 3.