MathDB
geO 98 [convex hexagon ABCDEF with B + D + F = 360°]

Source: IMO Shortlist 1998 Geometry 6

October 1, 2003
trigonometryanalytic geometrygeometryIMO Shortlistcomplex numbers

Problem Statement

Let ABCDEFABCDEF be a convex hexagon such that B+D+F=360\angle B+\angle D+\angle F=360^{\circ } and ABBCCDDEEFFA=1. \frac{AB}{BC} \cdot \frac{CD}{DE} \cdot \frac{EF}{FA} = 1. Prove that BCCAAEEFFDDB=1. \frac{BC}{CA} \cdot \frac{AE}{EF} \cdot \frac{FD}{DB} = 1.