MathDB
D 19

Source:

May 25, 2007
modular arithmeticCongruences

Problem Statement

Let a1a_{1}, \cdots, aka_{k} and m1m_{1}, \cdots, mkm_{k} be integers with 2m12 \le m_{1} and 2mimi+12m_{i}\le m_{i+1} for 1ik11 \le i \le k-1. Show that there are infinitely many integers xx which do not satisfy any of congruences xa1  (modm1),xa2  (modm2),,xak  (modmk).x \equiv a_{1}\; \pmod{m_{1}}, x \equiv a_{2}\; \pmod{m_{2}}, \cdots, x \equiv a_{k}\; \pmod{m_{k}}.