MathDB
Minimum Value of Fraction

Source: 2002 China Second Round Olympiad

August 30, 2014
algebra unsolvedalgebra

Problem Statement

There are real numbers a,ba,b and cc and a positive number λ\lambda such that f(x)=x3+ax2+bx+cf(x)=x^3+ax^2+bx+c has three real roots x1,x2x_1, x_2 and x3x_3 satisfying (1)x2x1=λ(1) x_2-x_1=\lambda (2)x3>12(x1+x2)(2) x_3>\frac{1}{2}(x_1+x_2). Find the maximum value of 2a3+27c9abλ3\frac{2a^3+27c-9ab}{\lambda^3}