MathDB
\log_n 2 \cdot \log_n 4 \cdot \log_n 6 \ldots \log_n (2n - 2) \leq 1.

Source: Polish MO Recond Round 1982 p3

September 9, 2024
logarithmalgebrainequalities

Problem Statement

Prove that for every natural number n2 n \geq 2 the inequality holds logn2logn4logn6logn(2n2)1. \log_n 2 \cdot \log_n 4 \cdot \log_n 6 \ldots \log_n (2n - 2) \leq 1.