MathDB
Geometric inequality

Source: China South East Mathematical Olympiad2011

August 18, 2011
inequalitiesvectorinequalities proposed

Problem Statement

Let PiP_i i=1,2,......ni=1,2,......n be nn points on the plane , MM is a point on segment ABAB in the same plane , prove : i=1nPiMmax(i=1nPiA,i=1nPiB)\sum_{i=1}^{n} |P_iM| \le \max( \sum_{i=1}^{n} |P_iA| , \sum_{i=1}^{n} |P_iB| ). (Here AB|AB| means the length of segment ABAB) .