MathDB
Problems
Contests
National and Regional Contests
Russia Contests
Russian Team Selection Tests
Russian TST 2022
P3
Hard inequality
Hard inequality
Source: Russian TST 2022, Day 8 P3
March 21, 2023
algebra
Inequality
Problem Statement
Let
n
⩾
3
n\geqslant 3
n
⩾
3
be an integer and
x
1
>
x
2
>
⋯
>
x
n
x_1>x_2>\cdots>x_n
x
1
>
x
2
>
⋯
>
x
n
be real numbers. Suppose that
x
k
>
0
⩾
x
k
+
1
x_k>0\geqslant x_{k+1}
x
k
>
0
⩾
x
k
+
1
for an index
k
k{}
k
. Prove that
∑
i
=
1
k
(
x
i
n
−
2
∏
j
≠
i
1
x
i
−
x
j
)
⩾
0.
\sum_{i=1}^k\left(x_i^{n-2}\prod_{j\neq i}\frac{1}{x_i-x_j}\right)\geqslant 0.
i
=
1
∑
k
x
i
n
−
2
j
=
i
∏
x
i
−
x
j
1
⩾
0.
Back to Problems
View on AoPS