MathDB
Hard inequality

Source: Russian TST 2022, Day 8 P3

March 21, 2023
algebraInequality

Problem Statement

Let n3n\geqslant 3 be an integer and x1>x2>>xnx_1>x_2>\cdots>x_n be real numbers. Suppose that xk>0xk+1x_k>0\geqslant x_{k+1} for an index kk{}. Prove that i=1k(xin2ji1xixj)0.\sum_{i=1}^k\left(x_i^{n-2}\prod_{j\neq i}\frac{1}{x_i-x_j}\right)\geqslant 0.