MathDB
Problems
Contests
National and Regional Contests
China Contests
(China) National High School Mathematics League
2021 China Second Round A1
3
Sequence Problem
Sequence Problem
Source: 2021 China Second Round Olympiad(B) P3
March 6, 2022
algebra
inequalities
Problem Statement
Let
{
a
n
}
\{a_n\}
{
a
n
}
,
{
b
n
}
\{b_n\}
{
b
n
}
be sequences of positive real numbers satisfying
a
n
=
1
100
∑
j
=
1
100
b
n
−
j
2
a_n=\sqrt{\frac{1}{100} \sum\limits_{j=1}^{100} b_{n-j}^2}
a
n
=
100
1
j
=
1
∑
100
b
n
−
j
2
and
b
n
=
1
100
∑
j
=
1
100
a
n
−
j
2
b_n=\sqrt{\frac{1}{100} \sum\limits_{j=1}^{100} a_{n-j}^2}
b
n
=
100
1
j
=
1
∑
100
a
n
−
j
2
For all
n
≥
101
n\ge 101
n
≥
101
. Prove that there exists
m
∈
N
m\in \mathbb{N}
m
∈
N
such that
∣
a
m
−
b
m
∣
<
0.001
|a_m-b_m|<0.001
∣
a
m
−
b
m
∣
<
0.001
[url=https://zhuanlan.zhihu.com/p/417529866] Link
Back to Problems
View on AoPS