MathDB
Miklos Schweitzer 1965_3

Source:

September 25, 2008
linear algebramatrixcomplex numberslinear algebra unsolved

Problem Statement

Let a,b_0,b_1,b_2,...,b_{n\minus{}1} be complex numbers, A A a complex square matrix of order p p, and E E the unit matrix of order p p. Assuming that the eigenvalues of A A are given, determine the eigenvalues of the matrix B\equal{}\begin{pmatrix} b_0E&b_1A&b_2A^2&\cdots&b_{n\minus{}1}A^{n\minus{}1} \\ ab_{n\minus{}1}A^{n\minus{}1}&b_0E&b_1A&\cdots&b_{n\minus{}2}A^{n\minus{}2}\\ ab_{n\minus{}2}A^{n\minus{}2}&ab_{n\minus{}1}A^{n\minus{}1}&b_0E&\cdots&b_{n\minus{}3}A^{n\minus{}3}\\ \vdots&\vdots&\vdots&\ddots&\vdots&\\ ab_1A&ab_2A^2&ab_3A^3&\cdots&b_0E \end{pmatrix}