MathDB
Putnam 2008 B6

Source:

December 8, 2008
Putnammodular arithmeticlinear algebramatrixinductionfloor functionfunction

Problem Statement

Let n n and k k be positive integers. Say that a permutation σ \sigma of {1,2,n} \{1,2,\dots n\} is k k-limited if |\sigma(i)\minus{}i|\le k for all i. i. Prove that the number of k k-limited permutations of {1,2,n} \{1,2,\dots n\} is odd if and only if n0 n\equiv 0 or 1\pmod{2k\plus{}1}.