MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN I Problems
5
I 5
I 5
Source:
May 25, 2007
floor function
Problem Statement
Find all real numbers
α
\alpha
α
for which the equality
⌊
n
+
n
+
α
⌋
=
⌊
4
n
+
1
⌋
\lfloor \sqrt{n}+\sqrt{n+\alpha}\rfloor =\lfloor \sqrt{4n+1}\rfloor
⌊
n
+
n
+
α
⌋
=
⌊
4
n
+
1
⌋
holds for all positive integers
n
n
n
.
Back to Problems
View on AoPS