Unique point X
Source: IMO Shortlist 1995, G
August 3, 2008
geometrycircumcirclereflectioncomplex numbersperpendicular bisectorIMO Shortlist
Problem Statement
Let and be non-collinear points. Prove that there is a unique point in the plane of such that XA^2 \plus{} XB^2 \plus{} AB^2 \equal{} XB^2 \plus{} XC^2 \plus{} BC^2 \equal{} XC^2 \plus{} XA^2 \plus{} CA^2.