MathDB
Unique point X

Source: IMO Shortlist 1995, G

August 3, 2008
geometrycircumcirclereflectioncomplex numbersperpendicular bisectorIMO Shortlist

Problem Statement

Let A,B A, B and C C be non-collinear points. Prove that there is a unique point X X in the plane of ABC ABC such that XA^2 \plus{} XB^2 \plus{} AB^2 \equal{} XB^2 \plus{} XC^2 \plus{} BC^2 \equal{} XC^2 \plus{} XA^2 \plus{} CA^2.