MathDB
Bosnia and Herzegovina TST 2004 Day 2 Problem 2

Source: Bosnia and Herzegovina Team Selection Test 2004

September 17, 2018
Inequalitycosinesinealgebra

Problem Statement

For 0x<π20 \leq x < \frac{\pi}{2} prove the inequality: a2tan(x)(cos(x))13+b2sinx2xaba^2\tan(x)\cdot(\cos(x))^{\frac{1}{3}}+b^2\sin{x}\geq 2xab where aa and bb are real numbers.