MathDB
Miklós Schweitzer 2012 P9

Source: Miklós Schweitzer 2012 P9

August 20, 2018
college contestsMiklos Schweitzer

Problem Statement

Let DD be the complex unit disk D={zC:z<1}D=\{z \in \mathbb{C}: |z|<1\}, and 0<a<10<a<1 a real number. Suppose that f:DC{0}f:D \to \mathbb{C}\setminus \{0\} is a holomorphic function such that f(a)=1f(a)=1 and f(a)=1f(-a)=-1. Prove that supzDf(z)exp(1a24aπ). \sup_{z \in D} |f(z)| \geqslant \exp\left(\frac{1-a^2}{4a}\pi\right) .