MathDB
TOT 219 1989 Spring S3 composition of 1000 linear functions

Source:

March 7, 2021
compositionfunction

Problem Statement

Given 10001000 linear functions fk(x)=pkx+qkf_k(x)=p_k x + q_k where k=1,2,...,1000k = 1 , 2 ,... , 1000, it is necessary to evaluate their composite f(x)=f1(f2(f3...f1000(x)...))f(x) =f_1 (f_2(f_3 ... f_{1000}(x)...)) at the point x0x_0 . Prove that this can be done in no more than 3030 steps, where at each step one may execute simultaneously any number of arithmetic operations on pairs of numbers obtained from the previous step (at the first step one may use the numbers p1,p2,...,p1000,ql,q2,...,q1000,xop_1 , p_2 ,... ,p_{1000}, q_l , q_2 ,... ,q_{1000} , x_o).
{S. Fomin, Leningrad)