MathDB
Functional Equation - prove equality from inequality

Source: ILL 1979 - Problem 65.

June 5, 2011
inequalitiesfunctionalgebra proposedalgebra

Problem Statement

Given a function ff such that f(x)xxRf(x)\le x\forall x\in\mathbb{R} and f(x+y)f(x)+f(y){x,y}Rf(x+y)\le f(x)+f(y)\forall \{x,y\}\in\mathbb{R}, prove that f(x)=xxRf(x)=x\forall x\in\mathbb{R}.