MathDB
Miklos Schweitzer 1964_6

Source:

September 20, 2008
functionintegrationreal analysisreal analysis unsolved

Problem Statement

Let y1(x) y_1(x) be an arbitrary, continuous, positive function on [0,A] [0,A], where A A is an arbitrary positive number. Let yn+1=20xyn(t)dt  (n=1,2,...) . y_{n+1}=2 \int_0^x \sqrt{y_n(t)}dt \;(n=1,2,...)\ . Prove that the functions yn(x) y_n(x) converge to the function y=x2 y=x^2 uniformly on [0,A] [0,A].