MathDB
Q 9

Source:

May 25, 2007
functionalgebrapolynomialcalculusintegrationrational functionPolynomials

Problem Statement

For non-negative integers nn and kk, let Pn,k(x)P_{n, k}(x) denote the rational function (xn1)(xnx)(xnxk1)(xk1)(xkx)(xkxk1).\frac{(x^{n}-1)(x^{n}-x) \cdots (x^{n}-x^{k-1})}{(x^{k}-1)(x^{k}-x) \cdots (x^{k}-x^{k-1})}. Show that Pn,k(x)P_{n, k}(x) is actually a polynomial for all n,kNn, k \in \mathbb{N}.