Consider the complex numbers x,y,z such that
∣x∣=∣y∣=∣z∣=1. Define the number
a=(1+yx)(1+zy)(1+xz).<spanclass=′latex−bold′>(a)</span> Prove that a is a real number.
<spanclass=′latex−bold′>(b)</span> Find the minimal and maximal value a can achieve, when x,y,z vary subject to ∣x∣=∣y∣=∣z∣=1. (Stefan Bălăucă & Vlad Robu)