MathDB
Bijective counting of partitions and compositions

Source:

May 5, 2012
combinatorics unsolvedcombinatorics

Problem Statement

Q. For integers m,n1m,n\geq 1, Let Am,nA_{m,n} , Bm,nB_{m,n} and Cm,nC_{m,n} denote the following sets:
Am,n={(α1,α2,,αm) ⁣:1α1α2αmn}A_{m,n}=\{(\alpha _1,\alpha _2,\ldots,\alpha _m) \colon 1\leq \alpha _1\leq \alpha_2 \leq \ldots \leq \alpha_m\leq n\} given that αiZ\alpha _i \in \mathbb{Z} for all ii
Bm,n={(α1,α2,,αm) ⁣:α1+α2++αm=n}B_{m,n}=\{(\alpha _1,\alpha _2,\ldots ,\alpha _m) \colon \alpha _1+\alpha _2+\ldots + \alpha _m=n\} given that αi0\alpha _i \geq 0 and αiZ\alpha_ i\in \mathbb{Z} for all ii
Cm,n={(α1,α2,,αm) ⁣:1α1<α2<<αmn}C_{m,n}=\{(\alpha _1,\alpha _2,\ldots,\alpha _m)\colon 1\leq \alpha _1< \alpha_2 < \ldots< \alpha_m\leq n\} given that αiZ\alpha _i \in \mathbb{Z} for all ii
(a)(a) Define a one-one onto map from Am,nA_{m,n} onto Bm+1,n1B_{m+1,n-1}. (b)(b) Define a one-one onto map from Am,nA_{m,n} onto Cm,n+m1C_{m,n+m-1}. (c)(c) Find the number of elements of the sets Am,nA_{m,n} and Bm,nB_{m,n}.