MathDB
inequality in two sequences

Source: Mongolia MO 2001 Teachers P2

April 12, 2021
inequalitiesSequencealgebra

Problem Statement

For positive real numbers b1,b2,,bnb_1,b_2,\ldots,b_n define a1=b1b1+b2++bn and ak=b1++bkb1++bk1 for k>1.a_1=\frac{b_1}{b_1+b_2+\ldots+b_n}\enspace\text{ and }\enspace a_k=\frac{b_1+\ldots+b_k}{b_1+\ldots+b_{k-1}}\text{ for }k>1.Prove that a1+a2++an1a1+1a2++1ana_1+a_2+\ldots+a_n\le\frac1{a_1}+\frac1{a_2}+\ldots+\frac1{a_n}