Cyclic inequality a_1 (b_1 + a_2) + a_2 (b_2 + a_3) + ... <1
Source: 7th German TST 2005, problem 2; Japan Mathematical Olympiad Finals 2002 , Problem 4
May 30, 2005
inequalitiesn-variable inequalityGermanyTST
Problem Statement
Let be a positive integer such that . Let , , ..., and , , ..., be positive real numbers satisfying the equations
a_1 \plus{} a_2 \plus{} ... \plus{} a_n \equal{} 1, \text{and} b_1^2 \plus{} b_2^2 \plus{} ... \plus{} b_n^2 \equal{} 1.
Prove the inequality
a_1\left(b_1 \plus{} a_2\right) \plus{} a_2\left(b_2 \plus{} a_3\right) \plus{} ... \plus{} a_{n \minus{} 1}\left(b_{n \minus{} 1} \plus{} a_n\right) \plus{} a_n\left(b_n \plus{} a_1\right) < 1.