MathDB
Recurrence Sequence

Source: 1988 National High School Mathematics League, Exam Two, Problem 1

February 25, 2020

Problem Statement

Define sequence (an):a1=1,a2=2,an+2={5an+13an,if anan+1 is evenan+1an,if anan+1 is odd(a_n):a_1=1,a_2=2,a_{n+2}=\begin{cases} 5a_{n+1}-3a_n,\text{if }a_n\cdot a_{n+1}\text{ is even}\\ a_{n+1}-a_n,\text{if }a_n\cdot a_{n+1}\text{ is odd} \end{cases} Prove that for all nZ+n\in\mathbb{Z}_+, an0a_n\neq0.