MathDB
Deleting products

Source: 2021 Nigerian MO Round 3/P6

December 19, 2022
algebrainduction

Problem Statement

Let mnm \leq n be natural numbers. Starting with the product t=m(m+1)(m+2)nt=m\cdot (m+1) \cdot (m+2) \cdot \cdots \cdot n, let Tm,nT_{m, n} be the sum of products that can be obtained from deleting from tt pairs of consecutive integers (this includes tt itself). In the case where all the numbers are deleted, we assume the number 11.
For example, T2,7=234567+2345+2347+2367+2567+4567+23+25+27+47+67+1=5040+120+168+252+420+840+6+10+14+20+28+42+1=6961T_{2, 7} = 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 + 2 \cdot 3 \cdot 4 \cdot 5 + 2 \cdot 3 \cdot 4 \cdot 7 + 2 \cdot 3 \cdot 6 \cdot 7 + 2 \cdot 5 \cdot 6 \cdot 7 + 4 \cdot 5 \cdot 6 \cdot 7 + 2 \cdot 3 + 2 \cdot 5 + 2 \cdot 7 + 4 \cdot 7 + 6 \cdot 7 + 1 = 5040 + 120 + 168 + 252 + 420 + 840 + 6 + 10 + 14 + 20 + 28 + 42 + 1 = 6961.
Taking Tn+1,n=1T_{n+1, n} = 1.
Show that Tm,n+1=Tm,k1Tk+2,n+1+Tm,kTk+1,n+1T_{m, n+1}=T_{m, k-1} \cdot T_{k+2, n+1} + T_{m, k} \cdot T_{k+1, n+1} for all 1mkn1 \leq m \leq k \leq n.