MathDB
BMO Shortlist 2021 N5

Source: BMO Shortlist 2021

May 8, 2022
Balkanshortlist2021number theoryfloor function

Problem Statement

A natural number nn is given. Determine all (n1)(n - 1)-tuples of nonnegative integers a1,a2,...,an1a_1, a_2, ..., a_{n - 1} such that m2n1+2m+a12n1+22m+a22n1+23m+a32n1+...+2n1m+an12n1=m\lfloor \frac{m}{2^n - 1}\rfloor + \lfloor \frac{2m + a_1}{2^n - 1}\rfloor + \lfloor \frac{2^2m + a_2}{2^n - 1}\rfloor + \lfloor \frac{2^3m + a_3}{2^n - 1}\rfloor + ... + \lfloor \frac{2^{n - 1}m + a_{n - 1}}{2^n - 1}\rfloor = m holds for all mZm \in \mathbb{Z}.