MathDB
ICMC 2018/19 Round 1, Problem 1

Source: Imperial College Mathematics Competition 2018/19 - Round 1

August 7, 2020
college contests

Problem Statement

This questions comprises two independent parts.
(i) Let g:RRg:\mathbb{R}\to\mathbb{R} be continuous and such that g(0)=0g(0)=0 and g(x)g(x)>0g(x)g(-x)>0 for any x>0x > 0. Find all solutions f:RRf : \mathbb{R}\to\mathbb{R} to the functional equation
g(f(x+y))=g(f(x))+g(f(y)), x,yRg(f(x+y))=g(f(x))+g(f(y)),\ x,y\in\mathbb{R}
(ii) Find all continuously differentiable functions ϕ:[a,)R\phi : [a, \infty) \to \mathbb{R}, where a>0a > 0, that satisfies the equation
(ϕ(x))2=ax(ϕ(y))2+(ϕ(y))2dy(xa)3, xa.(\phi(x))^2=\int_a^x \left(\left|\phi(y)\right|\right)^2+\left(\left|\phi'(y)\right|\right)^2\mathrm{d}y -(x-a)^3,\ \forall x\geq a.