MathDB
Problems
Contests
Undergraduate contests
Vojtěch Jarník IMC
2003 VJIMC
Problem 2
Disks in the Euclidean plane
Disks in the Euclidean plane
Source:
May 4, 2021
linear algebra
Problem Statement
Let
{
D
1
,
D
2
,
.
.
.
,
D
n
}
\{D_1, D_2, ..., D_n \}
{
D
1
,
D
2
,
...
,
D
n
}
be a set of disks in the Euclidean plane. Let
a
i
,
j
=
S
(
D
i
∩
D
j
)
a_ {i, j} = S (D_i \cap D_j)
a
i
,
j
=
S
(
D
i
∩
D
j
)
be the area of
D
i
∩
D
j
D_i \cap D_j
D
i
∩
D
j
. Prove that
∑
i
=
1
n
∑
j
=
1
n
a
i
,
j
x
i
x
j
≥
0
\sum_ {i = 1} ^ n \sum_ {j = 1} ^ n a_ {i, j} x_ix_j \geq 0
i
=
1
∑
n
j
=
1
∑
n
a
i
,
j
x
i
x
j
≥
0
for any real numbers
x
1
,
x
2
,
.
.
.
,
x
n
x_1, x_2, ..., x_n
x
1
,
x
2
,
...
,
x
n
.
Back to Problems
View on AoPS