MathDB
Triple product of three sides equals another triple product

Source: Benelux MO 2013 Q3

April 29, 2013
geometrycircumcircleratiopower of a pointgeometry unsolved

Problem Statement

Let ABC\triangle ABC be a triangle with circumcircle Γ\Gamma, and let II be the center of the incircle of ABC\triangle ABC. The lines AIAI, BIBI and CICI intersect Γ\Gamma in DAD \ne A, EBE \ne B and FCF \ne C. The tangent lines to Γ\Gamma in FF, DD and EE intersect the lines AIAI, BIBI and CICI in RR, SS and TT, respectively. Prove that ARBSCT=IDIEIF.\vert AR\vert \cdot \vert BS\vert \cdot \vert CT\vert = \vert ID\vert \cdot \vert IE\vert \cdot \vert IF\vert.