MathDB
Miklos Schweitzer 1979_11

Source: double sequence of random variables

January 28, 2009
probabilityprobability and stats

Problem Statement

Let {ξk}k,=1 \{\xi_{k \ell} \}_{k,\ell=1}^{\infty} be a double sequence of random variables such that
E(ξijξk)=O(log(2ik+2)log(2j+2)2)      (i,j,k,=1,2,) . \Bbb{E}( \xi_{ij} \xi_{k\ell})= \mathcal{O} \left(\frac{ \log(2|i-k|+2)}{ \log(2|j-\ell|+2)^{2}}\right) \;\;\;(i,j,k,\ell =1,2, \ldots ) \\\ .
Prove that with probability one,
1mnk=1m=1nξk0    as  max(m,n) . \frac{1}{mn} \sum_{k=1}^m \sum_{\ell=1}^n \xi_{k\ell} \rightarrow 0 \;\;\textrm{as} \; \max (m,n)\rightarrow \infty\ \\ .
F. Moricz