MathDB
nonstandard inequality

Source: 2016 IMO Shortlist A8

July 19, 2017
IMO Shortlistinequalitiesn-variable inequality

Problem Statement

Find the largest real constant aa such that for all n1n \geq 1 and for all real numbers x0,x1,...,xnx_0, x_1, ... , x_n satisfying 0=x0<x1<x2<<xn0 = x_0 < x_1 < x_2 < \cdots < x_n we have 1x1x0+1x2x1++1xnxn1a(2x1+3x2++n+1xn)\frac{1}{x_1-x_0} + \frac{1}{x_2-x_1} + \dots + \frac{1}{x_n-x_{n-1}} \geq a \left( \frac{2}{x_1} + \frac{3}{x_2} + \dots + \frac{n+1}{x_n} \right)