MathDB
f_ij for a set{1,2,3,...,n}

Source:

August 28, 2010
graph theoryalgebra proposedalgebra

Problem Statement

Let N={1,2,,n}N = \{1, 2, \ldots, n\}, n3n \geq 3. To each pair iji \neq j of elements of NN there is assigned a number fij{0,1}f_{ij} \in \{0, 1\} such that fij+fji=1f_{ij} + f_{ji} = 1. Let r(i)=ijfijr(i)=\sum_{i \neq j} f_{ij}, and write M=maxiNr(i)M = \max_{i\in N} r(i), m=miniNr(i)m = \min_{i\in N} r(i). Prove that for any wNw \in N with r(w)=mr(w) = m there exist u,vNu, v \in N such that r(u)=Mr(u) = M and fuvfvw=1f_{uv}f_{vw} = 1.