MathDB
Sets in R^n

Source: Iran 2005

September 21, 2005
geometrygroup theoryabstract algebrageometric transformationGausstopologyabsolute value

Problem Statement

We define a relation between subsets of Rn\mathbb R ^n. ABA \sim B\Longleftrightarrow we can partition A,BA,B in sets A1,,AnA_1,\dots,A_n and B1,,BnB_1,\dots,B_n(i.e A=i=1nAi, B=i=1nBi,AiAj=, BiBj=\displaystyle A=\bigcup_{i=1} ^n A_i,\ B=\bigcup_{i=1} ^n B_i, A_i\cap A_j=\emptyset,\ B_i\cap B_j=\emptyset) and AiBiA_i\simeq B_i. Say the the following sets have the relation \sim or not ? a) Natural numbers and composite numbers. b) Rational numbers and rational numbers with finite digits in base 10. c) {xQx<2}\{x\in\mathbb Q|x<\sqrt 2\} and {xQx<3}\{x\in\mathbb Q|x<\sqrt 3\} d) A={(x,y)R2x2+y2<1}A=\{(x,y)\in\mathbb R^2|x^2+y^2<1\} and A{(0,0)}A\setminus \{(0,0)\}