MathDB
m(a,b) is largest integer <= (1+na)/(1+nb) for all n>=1

Source: SMMC 2024 A3

October 12, 2024
algebra

Problem Statement

Let WW be a fixed positive integer. Let SS be the set of all pairs (a,b)(a, b) of positive integers such that aba \neq b. For each (a,b)S(a, b) \in S, let m(a,b)m(a,b) be the largest integer satisfying m(a,b)1+na1+nb m(a, b) \leq \frac{1 + na}{1 + nb} for all integers n1n \geq 1.
(a) For each (a,b)S(a, b) \in S, prove that there exists a positive integer kk such that m(a,b)1+naW+nb m(a,b) \leq \frac{1 + na}{W + nb} for all nkn \geq k.
(b) For each (a,b)S(a, b) \in S, let k(a,b)k(a,b) be the smallest value of kk that satisfies the condition of part (a). Determine max{k(a,b)(a,b)S}\max \{k(a,b) \mid (a,b) \in S \} or prove that it does not exist.