MathDB
Four variables

Source: Middle European Mathematical Olympiad 2013 T-2

May 17, 2014
inequalities proposedinequalities

Problem Statement

Let x,y,z,w x, y, z, w be nonzero real numbers such that x+y0 x+y \ne 0, z+w0 z+w \ne 0 , and xy+zw0 xy+zw \ge 0 . Prove that (x+yz+w+z+wx+y)1+12(xz+zx)1+(yw+wy)1 \left( \frac{x+y}{z+w} + \frac{z+w}{x+y} \right) ^{-1} + \frac{1}{2} \ge \left( \frac{x}{z} + \frac{z}{x} \right) ^{-1} + \left( \frac{y}{w} + \frac{w}{y} \right) ^{-1}