MathDB
Putnam 1960 B6

Source: Putnam 1960

June 11, 2022
Putnamp-adicsseries

Problem Statement

Any positive integer nn can be written in the form n=2k(2l+1)n=2^{k}(2l+1) with k,lk,l positive integers. Let an=eka_n =e^{-k} and bn=a1a2a3an.b_n = a_1 a_2 a_3 \cdots a_n. Prove that n=1bn\sum_{n=1}^{\infty} b_n converges.