Prove these properties on Fibonacci and Lucas Sequences
Source: 2019 Jozsef Wildt International Math Competition-W. 19
May 18, 2020
number theoryFibonacci sequenceLucas sequence
Problem Statement
Let {Fn}n∈Z and {Ln}n∈Z denote the Fibonacci and Lucas numbers, respectively, given by Fn+1=Fn+Fn−1andLn+1=Ln+Ln−1for alln≥1with F0=0, F1=1, L0=2, and L1=1. Prove that for integers n≥1 and j≥0[*]k=1∑nFk±jLk∓j=F2n+1−1+{0,(−1)±jF±2j,ifnis evenifnis odd
[*] k=1∑nFk+jFk−jLk+jLk−j=5F4n+2−1−nL4j