MathDB
Problems
Contests
National and Regional Contests
Indonesia Contests
Indonesia MO
2003 Indonesia MO
7
If k-n divides k^m - n^(m-1), prove that k <= 2n-1
If k-n divides k^m - n^(m-1), prove that k <= 2n-1
Source: INAMO 2003 - Problem 7
August 5, 2011
number theory unsolved
number theory
Problem Statement
Let
k
,
m
,
n
k,m,n
k
,
m
,
n
be positive integers such that
k
>
n
>
1
k > n > 1
k
>
n
>
1
and
(
k
,
n
)
=
1
(k,n) = 1
(
k
,
n
)
=
1
. If
k
−
n
∣
k
m
−
n
m
−
1
k-n | k^m - n^{m-1}
k
−
n
∣
k
m
−
n
m
−
1
, prove that
k
≤
2
n
−
1
k \le 2n - 1
k
≤
2
n
−
1
.
Back to Problems
View on AoPS