MathDB
Problems
Contests
Undergraduate contests
Putnam
1958 November Putnam
B4
Putnam 1958 November B4
Putnam 1958 November B4
Source: Putnam 1958 November
July 19, 2022
Putnam
function
derivative
limit
Problem Statement
Let
C
C
C
be a real number, and let
f
:
R
→
R
f: \mathbb{R} \rightarrow \mathbb{R}
f
:
R
→
R
be a three times differentiable function such that
lim
x
→
∞
f
(
x
)
=
C
,
lim
x
→
∞
f
′
′
′
(
x
)
=
0.
\lim_{x \to \infty} f(x)=C, \;\; \; \lim_{x \to \infty} f'''(x)=0.
x
→
∞
lim
f
(
x
)
=
C
,
x
→
∞
lim
f
′′′
(
x
)
=
0.
Prove that
lim
x
→
∞
f
′
(
x
)
=
0
and
lim
x
→
∞
f
′
′
(
x
)
=
0.
\lim_{x \to \infty} f'(x) =0 \;\; \text{and} \;\; \lim_{x \to \infty} f''(x)=0.
x
→
∞
lim
f
′
(
x
)
=
0
and
x
→
∞
lim
f
′′
(
x
)
=
0.
Back to Problems
View on AoPS