MathDB
Existence of reals satisfying cyclic relation

Source: 2018 China TST Day 1 Q1

January 2, 2018
algebra

Problem Statement

Let p,qp,q be positive reals with sum 1. Show that for any nn-tuple of reals (y1,y2,...,yn)(y_1,y_2,...,y_n), there exists an nn-tuple of reals (x1,x2,...,xn)(x_1,x_2,...,x_n) satisfying pmax{xi,xi+1}+qmin{xi,xi+1}=yip\cdot \max\{x_i,x_{i+1}\} + q\cdot \min\{x_i,x_{i+1}\} = y_i for all i=1,2,...,2017i=1,2,...,2017, where x2018=x1x_{2018}=x_1.