MathDB
number of the form $2^p3^q$

Source: 6-th Taiwanese Mathematical Olympiad 1997

January 18, 2007
number theory unsolvednumber theory

Problem Statement

Show that every number of the form 2p3q2^{p}3^{q} , where p,qp,q are nonnegative integers, divides some number of the form a2k102k+a2k2102k2+...+a2102+a0a_{2k}10^{2k}+a_{2k-2}10^{2k-2}+...+a_{2}10^{2}+a_{0}, where a2i{1,2,...,9}a_{2i}\in\{1,2,...,9\}