MathDB
Golden set

Source: Iran 2004

September 18, 2004
number theoryprime numberscombinatorics proposedcombinatorics

Problem Statement

We say mnm \circ n for natural m,n \Longleftrightarrow nth number of binary representation of m is 1 or mth number of binary representation of n is 1. and we say mnm \bullet n if and only if m,nm,n doesn't have the relation \circ We say ANA \subset \mathbb{N} is golden \Longleftrightarrow U,VA\forall U,V \subset A that are finite and arenot empty and UV=U \cap V = \emptyset,There exist zAz \in A that xU,yV\forall x \in U,y \in V we have zx,zyz \circ x ,z \bullet y Suppose P\mathbb{P} is set of prime numbers.Prove if P=P1...Pk\mathbb{P}=P_1 \cup ... \cup P_k and PiPj=P_i \cap P_j = \emptyset then one of P1,...,PkP_1,...,P_k is golden.