MathDB
GCD and LCM Inception

Source: Indian RMO 2013 Mumbai Region Problem 5

February 1, 2014
number theorygreatest common divisorleast common multiplenumber theory unsolved

Problem Statement

Let a1,b1,c1a_1,b_1,c_1 be natural numbers. We define a2=gcd(b1,c1),b2=gcd(c1,a1),c2=gcd(a1,b1),a_2=\gcd(b_1,c_1),\,\,\,\,\,\,\,\,b_2=\gcd(c_1,a_1),\,\,\,\,\,\,\,\,c_2=\gcd(a_1,b_1), and a3=lcm(b2,c2),b3=lcm(c2,a2),c3=lcm(a2,b2).a_3=\operatorname{lcm}(b_2,c_2),\,\,\,\,\,\,\,\,b_3=\operatorname{lcm}(c_2,a_2),\,\,\,\,\,\,\,\,c_3=\operatorname{lcm}(a_2,b_2). Show that gcd(b3,c3)=a2\gcd(b_3,c_3)=a_2.