MathDB
Finding two functions satisfying conditions

Source:

October 28, 2010
functionalgebra unsolvedalgebra

Problem Statement

Given a nonconstant function f:R+Rf : \mathbb{R}^+ \longrightarrow\mathbb{R} such that f(xy)=f(x)f(y)f(xy) = f(x)f(y) for any x,y>0x, y > 0, find functions c,s:R+Rc, s : \mathbb{R}^+ \longrightarrow \mathbb{R} that satisfy c(xy)=c(x)c(y)s(x)s(y)c\left(\frac{x}{y}\right) = c(x)c(y)-s(x)s(y) for all x,y>0x, y > 0 and c(x)+s(x)=f(x)c(x)+s(x) = f(x) for all x>0x > 0.